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FOREWORD
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COMPARISON OF THE HARTREE-FOCK ORBITAL WITH THE FIRST

NATURAL SPIN ORBITAL FOR TWO-ELECTRON SYSTEMS

by

George V. Nazaroff and Joseph O. Hirschfelder

University of Wisconsin Theoretical Chemistry Institute

Hadison_ Wisconsin

A demonstration is given that for two-electron systems the Hartree-

Fock and first natural spin orbitals are different functions. The

method used is perturbation theory for which the zero-order problem is

the Hartree-Fock approximation. A perturb&tlon expansion through the

second order is obtained for the first natural spin orbital. The two

orbitals begin to differ in the second order and their energies in the

fourth order. An equation for the second order par_: of the orbital

difference function is derived. Estimates of the norms of _he ozbltal

difference functions are calculated for the ground states of the helium

atom and the hydrogen molecule and are found to be small. /_ _,_

This research was supported Jointly by the following contract and

grant: United States Air Force Contract AF 33(657)-7311 and National

Aeronautics and Space Administration Grant HsG-275-62(_180).
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COMPARISON OF THE HARTREE-FOCK ORBITAL WITH THE FIRST

NATURAL SPIN ORBITAL FOR TUO-ELECTRON SYSteMS

Introduction

Calculations of approximate energies of two-electren systems have

shown that the first natural spin orbital gives an approximate energy

very close to the Hartree-F_ k ener_1'2'3'4)-. The question has arisen

whether the first natural spin orbital would coincide with the Hartree-

Fock orbital if it were calculated exactly. One would expect the two

orbitals to be different functions because they are defi_ differently.

The Hartree-Fock orbital is defined to give the optimum energy, whereas

the first natural spin orbital is defined to have the optimum overlap

with the true wave function. In this paper a demonstration is given

that the first natural spin orbital is different from the Hartree-Fock

orbital for two-electron systems even though the difference is small.

The method f=llowed in thls paper is perturbation theory in which

the zero-order problem is the Hartree-Fock approximation. The discus-

sion starts with a brief summary of the proof. After that follows a

short review of natural spin orbitals for two-electron systems. The

perturbation scheme is then defined, and an expression for the first

natural spin orbital is developed in terms of the Hartree-Fock orbital.

The difference function between the two orbitals is then discussed, and

its norm is explicitly calculated for the helium atom.

Throughout the discussion the exact wave function of the two-

electron system is always the spatial part of the stnglet ground state

wave function. Likewise, only the sp4ttial parts of the Hartree-Fock

and natural spin orbitals are considered. The spin parts are disre-

garded since the Hamiltonlan does not contain any spin operators.

(I) H. Shull and P.-O. L_wdln, J. C. P. 23, 1565 (1955).

(2) P.-0. L_wdln and H. Fnull, Phys. Rev. I01, 1730 (1956).

(3) H. Shull and P.-O. Ll_din, J. C. P. 30, 617 (1959),

(4) E. R. Davldson, J. C. P. 37, 2966 (1962).
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In brief, the proof that the first natural spin orbital is differ-

ent from the Hartree-Fock orbital is as follows. The exact wave function

of the two-electron system is first expanded in a perturbation series,

eq. (12), in which the leading term is the Har_ree-Fock function. Then

the perturbation expansion of the first natural spin orbital_ eq. (14),

correct through the second order in the perturbation parameter is

derived. It becomes apparent, eq. (18), that the difference between the

two orbitals is not everywhere zero. Therefore the two orbltals are

different functlon_.

The use of perturbation theory is Justified by the smallness of the

perturbation. An order of magnitude estimate of the perturbatlou can be

obtained from the following considerations. The difference between the

Hartree-Fock energy of a two-electron system and the approximate energy

given by the first natural spin orbital should be of the fourth order

in the perturbation_ 5)'"Shull and L_wdin (3) found this energy difference

to be 1.43 x 10-4 e2/ao for the helium atom; Davldson (4) obtained

1.57 x 10-4 e2/ao for the hydrogen molecule. Therefore, the pertur-

bation is small enough to justify a perturbation expansion.

Perturbation Expansion of the Firs t Natural Spin Orbital

In thi_ section, a few properties of the natural spin orbitals are

first discussed. Then the perturbation s,.heme which is used in develop-

ing the exact wave function of a two-electron system is explicitly

stated. After that, the perturbation expansion of the first natural

spin orbital is developed.

The exact normalized wave function _(12) of a two-electron system

can be expanded in terms of the natural spin orbltal_2'4'6'7)_k" as

follovs:

(5) See footnote (8).

(6) P.-O. L_din, Phys. Rev. _ 1474 (1955).

(7) E. R. Davldson, J. C. P. _ 577 (1962).
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k=l

wh the _k are the occupation numbers. The natural spin orbitals

are mutually orthonormal, i.e.

k(1)_k'(1)d_1 = kk'

For the purposes of this discussion it is convenient to rewrite the

wave function _(12) as

.(12) - _i_I(I)_2) +T(121 (3)

where T(12) contains all of the natural spin orbitals except the first

one. An important property of the first natural spin o_ital is that

it is strongly orthogonal to the function T(12) , i.e.

/T'(12)_l(1)d _ -_'(12)_I(2)dz2 = 0 . (,)

The pertLrbation scheme is obtained by rewriting the exact

Hamiltonian H of the two-electron system as a Hartree-Fock Hmmilton-

Jan H(°) plus a perturbation H(1)

u = s(°)+ _n(I) (s)

where _ is the -orturbatlon par-meter which is ultimately set equal

to unity° The Lartree-Fock Hamiltonlan is

H(°) = h°(1) + h°(2) (6)

where

2

3
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in atomic units, The Hartree-Fock potential V(1) in which electron

1 moves is

V(1) - /'-_27o(2) _ f'o(2)d¢ 2 . (8)r12

The function _o Is the Hartree-Fock orbital which satisfies the
equation

with E o as the orbital energy. The liartree-Fock orbital is norma1_ized

to unity, i.e.

o(l) o(l)d_1 _ l . (10)

The Hartree-Fock function of the two-electron system is given by the

product _o(i)?o(2) . The perturbation term Htl)"" in the Hamlltonlan
is

u(l) = ---I- V(l)- v(2) (11)
r12

where V is defined by eq. (8), and r12 is the inter-electronic
dlstance.

According to the above perturbation scheme the exact @ave function

$(12) is written as _o(I)_o(2) plus additional terms. The detailed

form of this expansion through the second order in _ is derived in

Appendix I_ eq. (I_10), and is

_,(12) = C_,_o(1)fo(2)+ _2[fo(1)f(2)(2) + f(2)(1)?o(2 t
(12)

+ _S(1)(12 ) + _2S(2)(12 ) + higher order I
terms

The normalization constant C is also the overlap between $(12) and

the Hartree-Fock function JJ_)°(1)(P°(2) The functions f(2) , S(1)

4
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and S (2) obey the following orthognality relations (see end of

._ Append _x I),

/-• f(2)(1)jo(1)d) drI = 0 , (13a)

fs (1)el = 0 (13b)
and

f"S(2)(12)jo(1)dtl_) = 0 . (13c)

From an examination of #(12) given by eq. (12) it is seen that

the second order expansions for the first natural spin orbital and the

function T(12) appearing in eq. (3) are

_i(I) = ?o(i) + A2f (2)(I) (141

and

Z(_2) ,, ),S(l)(n) +)?S(2)(n) . (15)

The overlap between _o(l) and _ 1(]) is equal to unity, through

order, since _o(I) is orthogonal to f(2)(1) , eq. (13a).
the second

Therefore, the overlap C between _(12) and ?o(1)fo(2) is approx-

imately equal to w_,]. , the square root of the fiTst occupation number.

The two following observations indicate that eqs. (14) and (i5)

are the correct second order expansions. First, substituting the two

expansions into _(12) given by eq, (3) and keeping terms only through

the second order in _ gives the correct form of _(12) through the

"second order, eq. (12). Second_ the perturbation expansion of the

first natural spin _rbital, eq. (14), satisfies the normalization

condition, eq. (2) with _ = k* - 1 , through the second order in _ ,

_.e,

SC,o j[ t(l) +,_2f(2)(l _o(l ) +_2f(2) ( d_l - l (16)

5
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by virtue of eqs. (10) and (13a). The two expansions also _atlsfy,

through the second order, the _trong orthogonallty condition, eq. (4)_

i.e.

by virtue of eqs. (13b) and (13e). Therefore, it can be concluded that

eq. (14) is the correct second order expansion of the first natural

spin orbital for a two-electron system.

From eq. (14) it is apparent that the first natural spin orbital

_I is different from toe Hartree-Fock orbital _o . The difference

between the two orbitals, up through the second order in _ , is given

by the difference function (8) f(2) .

The Difference Function f(2)

The equation which the difference function f(2) satisfies (see

Appendix II, eq. (II,6)) is

°(1)- _o f(2)(1) _ S(2)_o(1)- (1)(12)H(Z)fo(2)dz2 (18)

where the fuaction S(1) satisfies the equation

The quantities B (I) and g(2) are the first and second order energies

of the two-electron system and are given by the well-kno_n_ eqs. (II,3)

and (II,5).

Fron eq. (19) it is apparent that S(1) is not everywhere zero.

Therefore it follows from eq. (18) that the difference function f(2)

is not everywhere zero. Thus_ the first natural spin orbital begins

to differ from the Hartree-Fock orbital in the second order.

(8) From eq. (14) one can verify that the Hartree-Fock energy begins to

differ from the first natural spin orbital energy in the fourth

order. This result is obtained by taking the expectation value of

tLe Hamiltonian H , eq. (5), w_ _i(I)_i(2) and making use of
the form of the perturbation R , eq. (Ii).

6
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An estimate for f(21 can be obtained frc_ a sufficiently good

approximate twc_-electron wave function by the following method. (91 Multi-

plying _(121 , eq. (12), by _o(2) • integrating over the coordinates
of ei_.ctron 2 and taking the orthogonality relations, eqs. (13a)_ (13b)

and (!3c)_ into accountj we obtain

*,s _ . (12) (2)d, 2 - (1) (20)

where

ffi* fo foc = (12) (1) (2) dhdz 2 . (21)

Equation (20) is an approximation because the formula gives f(2) plus

higher order contributions. The norm of f(2)'" (1) in general is defined

to be

[[f(21{I = (21(1)f(2)(1) d_ . (22)

In terms of the two-electron wave function of eq. (12),

l[f(2)ll _. i + (12)fo(2)dt (12)fv(2)dz d .

(23)

Equatio=m (211 and (23) were used to obtain an estimate for the

norm of f(2)-"for the case of the helium atom. The normalized Hylieraas

functio_10)

t(12) _" (1.3801 I"!1+(0.3534)u + (0.!282)t 2 - (O. lO07)s

' 2_ (24)+ (0.03305)s 2 - (0.03173)u exp(-1.818s)

(9) This method, due to O. Sinano_lu_ was communicated to us by D.
Tu_.

(10) E. A llylleraas, Z. Physlk 5_4_ 347 (1929).

7

v

1964017472-012



was t_en as an spproximatlon to the exact helium wave function. The

variables s, t and u are the well-known combinations s = (rI + r2) ,

t = (rI - r2) and u = r12 where the rI , r2 , and r12 are

expressed in units of a° =_21_e2 with _ being the reduced mass of
the helium atom.

The difference function f(2)(1) , eq. (20)j has the form

f(2)(i) c "Yo(I) (25)

where

2_ f0Odr _irl+r2
= -- drl_ _(12) . (26)

Z(l) r l_.2- 0 2 2=irl.r2 [ r2rx2 fo(2)

following analytic approxlmatlon (II) to ,_;o(2) was
The used

_o (2) = _2"968-466)4_[exp(-l.455799 r2)+ (2.00) exp(-0.8734794 r21. (27)

Here r2 is in units of a° . The function I(I) turned out to be

(with rI in uni=s of a° ):

[(0.I196) exp(-l.818 rl) - (0.1092) exp{-5.092 rl)
i(1)

- (0.01041) exp(-6.547 rI + (1.037) exp(-l.818 rl)

(28)
- (0.08935) exp(-5.092 rl) - (0.01231) exp(-6.547 rl)

2
+ (0.08650) exp(-l.818 rl) rI + (0.1286) exp(-l.818 rl) rI .

The coefficient C , eq. (21), is

.f_O rl2I(1)fo(1) = 0.9961 (29)C = 4_ dr I
_i=0

(II) L. C. Green, M. M. Mulder, M. N. Lewis and J. W. Woll, Phys. Rev.
93, 757 (1954).
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The non of f(2) eq. (23) isJ

_If(2)ll _ i +_ _l.odrlrl I(1)1(1 = 0.002 . (30)

Thus the non of f(2) is very small compared to unity_ the non of f o"

The overl_ between the Hartree-Yock and first natural spin

orbitalsj throu_ the fourth order3 is

: C_,(1)_l(1)d{ 1 - l+ilf(2)ll - 0.999998 . (31)

_r value for the overl_ is higher th_ the value obtained by L_din

a_ Shull! 2) 0.99995080 . Stnano_lu has mentioned that as one improves

an _prox_mate two-electron wave _nction, the _itude of the function

f(2) is reduced. Since the ener_ obtained by l_wdln and Shull is

-2.8785973 e2/a as c_pared with -2.90324 e2/a obtained by Hylleraas_ 10)"
O O

the wave _nctlon calculated by l_odln and Shull has a larger f(2) th_

the _llerdas function, eq, (24). Thus, the _ove overl_s are in the

correct relationship.

Davidson (4) has ex_ined the natural spin orbital _panston of the

Kolos _d Rootha_ wave _nction for the hydrogen molecule. He _tained

0.999982 for the overl_ between the Hartree-Fock and first natural

spin orbitals of _ . Therefore# the no_ of the f(2) associated

with the Kolos and Roothaan wave function is _proximately 0.006 ,

This value is small compared to untty_ the non of the Hartree-Fock

function for H2 •
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APPENDIX I

Perturbation Expansion of an Exact Two-Electron Wave Function

In this appendix a derivation is given of the form which an exact

two-electron wave function $(12) must necessarily assume if it is

developed according to the perturbation scheme described by eqs. (5)

through (II).

If the exact two-electron Hamiltonian of the system is decomposed

according to eqs. 45) and (6), then the two-electron Schr_dinger

equation which $412) satisfies can be written as

(h°(1) + h°(2)+_H (I)) ,(12) = E$(12) (1,15

where E is the exact energy of the two-electron system.

The zero-order two-electron problem associated wltb eq. (I_l) is

• _h°41) + h°(2_fo(1)_o(2, - 2_o?o(I)_o42) . (][,2)

Therefore $4125 must be written as the solution of the zero-order

problem, _o(I)_o(2) , plus some other functions.

'Eheone-electron problem equivalent to eq. (1,2) is

Zhe one-electron Hamiltonian h°(1) _ eq. (7). is

h°(1)" V2(l) + (25--rt2

with the Hartree-Fock potential V(1) , eq. (8)j written out explicitly.

It should be noted that the operator h°(1) in eqs. (I,I) to (I>4)

depends on the unknown function _o "

After eq. (1,4) is solved for Yo ' one can use the operator

h°(1) with y o fixed to define ..%efollowing eigenvalue problem

h°(1)fk(15 = _k_k(1) k = I, 2, .... (I,5)

IO
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The two-electron wave function _,(12) can be expanded in terms of

products of the form _i(1)fi(2) where i,j = 0, I, 2, .... In these

products the orbltals are any solution of eq. (1,5) or the Hartree-Fock

orbital _o " Therefore the perturbation expansion of _(12) through

the second order in _ is

co,

i_J_O (L6)

+ higher order terms_
,#

wh_re C is the normalization constant. The summation sign includes

integration over the continuum while the asterisk implies that the

)ubscript8 i and j _re never both equal to zero.

The perturbation expansion of eq. (1)l) is obtained by substituting

into eq. (I_I) $(12) from eq. (136) and E from the well-known

expansion

Collecting coefficients of _ and _ 2 one obtains, respectivelyj the

well-known_expressious

!j = (£i + _j - 2_o) ,- (z.8)

a_

c(2)

iJ " L (E i 4-Ej °-21_o)

m,_,O (1,9)

<(pm(1)_)n(2) [E.!1)- .B(.!).I_o(I)_o(2)>

where the brackets are a short-hand notation for the integrals. A

straight forward calculation shows that the integrals

II
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"-_i_i>_2_iE_I_H_1_r_1_2_>-vanls_i_at1_astoneo_the
_ev _J

_ subscripts i or j is equal to zero.

Substituting eqs. (1,8) and (1,9) into eq. (1,6) one obtains the

desired second order expansion of $(12) _ namely

_(12) = C{_o(1)fo(2)+ )2[f(2)(i)_o(2)+ ?o(I)f(2)(2)_
(I>I0)

higher order_.

+ _ S(1)(12) + _2S(2) (12) + terms

The functions f(2) S(I) aztd S(2) are

= I c(2)_ i(11 ' (Z,lla)f(2) (1) io
i=l

60

s(l)(12) = cij _i( , (I,11b)
ijJ=l

and

_(2)_,"l)_j(2) . (i,11c)s(2) (12) = _ljyl_
i_J=l

S_nce the Hartree-Fock orbital _ is orthogonal to all of the orbitals
; O

I (k = Ij 2_ ...) j the above three functlon8 have the orthogonality

properties given by eqs. (13a)j (13b) and (13c).

12

1964017472-017



APPENDIX II

Equation for the Difference Function f(2)

In this appendix the equation which the second order difference

function f(2) satisfies is developed by straight forward perturbation

techniques.

The equation _or f(2) is obtained from the two-particle

Schr_dinger e_ua_ion

by decmupoaing the Bamtltonian according to eqs,, (5) and (6)_ expanding

E according to eq. (Ij7) and writing for _(12) the perturbation

expansion given by eq. (12). E_uating coefficients of _ and _ 2 one

obtainsj respectivelyj

where

and

(11,4)

where

x(_').//s(t)*(_2)B(t)_o(l)(pO(2)dttd;:2 . (H,5)

13
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Multiplying eq. (II>4) by _o(2) , integrating over electron Z and

taking eqs. (13a)_ (13b) and (13c) into accountj one obtains the equation

for the difference function f(2) namelyJ

where E (2) is given by eq. (II, 5) and S(1) satisfies eq. (II t2).

14
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